CHEM 116 – Honors and Majors General and Analytical Chemistry I 3 Exams, 9 Quizzes, 10 Labs, 13 Weeks HWK - 875 points (1245 in course)

EIII: AV	EIII: AVE = 95 (63%)		Range: 36 - 146			Clas	Class Averages		
EII: AV	/E = 106 (71%	%)				EXAM	288	64%	
EI: AV	/E = 87 (58%	%)				QZ	57	63%	
Q1 (6.0	Q5	6.6	Q8	6.4	LAB	165	83%	
Q3 4	4.2	Q6	6.2	Q9	8.3	HWK	109	81%	
Q4 7	7.8	Q7	6.1	Q10	4.9				
						Course G	Grade Es	stimate	
E1 ´	19.4	E7	13.0	4-4	15.9	А	75%		
E2 ~	17.3	SP	17.7	E8	14.8	В	65%		
L3 <i>^</i>	18.4	L5	17.9	10.5	15.2	С	50%		
E5 16.3 class average 71.2%			D	40%					
GPA 3.1									

Titrations

H Ch 11

FIND EQUIVALENCE POINT FIRST

CORRECT MOLARITY AS TITRANT IS ADDED

10-1 The Intermediate Form11-4 Polyprotic (basic) Titrations

homework for week 14,15 due dates this Wednesday and Friday

lab notebooks due on Wednesday in discussion

Acid-Base Titrations

"Learn to recognize buffers! They lurk in every corner of acid-base chemistry."

Acid-Base Titrations

Solution of a base of known concentration is added to an acid of unknown concentration (or acid of known concentration added to a base of unknown concentration)

titrant

titration curve

equivalence point

half-equivalence point

pH > 7 titrating weak acid

pH = 7 titrating strong acid or base

pH < 7 titrating weak base

endpoint

REVIEW FROM WEDNESDAY

Acid-Base Titrations - Strong

strong acid or strong base titration overview

classic Arrhenius neutralization reaction characterized by strong acid (base):

strong base (acid) titrant:

total ionic equation:

net ionic equation (what is *K*?):

titration curve – one inflection point (equivalence point)

Strong Base Titrations

EX 1. Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr.

EQ PT: $n_{H+} = (MV)_{H+} = n_{OH-} = (MV)_{OH-} => V_e = V_{H+} = (50)(0.02)/0.1 = 10.00 \text{ mL}$

a) before any acid is added strong base

pH = 13.9956 + log (0.02000) = 12.2966 => **12.297**

- b) when 3.00 mL of HBr is added excess OHpH = 13.9956 + log {[50(0.02) - 3(0.1)] / **53**} = **12.116**
- c) at the equivalence point $[H^+] = [OH^-]$

 $K_{\rm w} = [{\rm H}^+]^2 \Longrightarrow [{\rm H}^+] = \sqrt{K_{\rm w}} \Longrightarrow p{\rm H} = \frac{1}{2} pK_{\rm w} = 13.9956/2 = 6.998$

d) when 10.50 mL of HBr is added $excess H^+$

pH = -log {[(10.5)(0.1) - 50(0.02)] / 60.5} = 3.0827 => 3.083

REVIEW FROM WEDNESDAY

Acid-Base Titrations - Weak

weak acid (base) titrated with strong base (acid):

weak acid (base):

strong base (acid) titrant:

total ionic equation:

net ionic equation (what is *K*?):

titration curve - two inflection points

half-equivalence point (perfect 1/1 buffer)
equivalence point, solution identical to conjugate
base (acid) dissolved in water

Weak Acid Titrations

EX 2. 50.00 mL 0.02000 M MES [2-(*N*-morpholino)ethanesulfonic acid, pKa = 6.27] titrated with 0.1000 M NaOH. EQ PT: $n_{OH-} = (MV)_{OH-} = n_{H+} = (MV)_{H+} => V_e = V_{OH-} = (50)(0.02)/0.1 = 10.00 \text{ mL}$ a) before any base is added weak acid: $K = x^2/(F-x)$ $K_a = 10^{-6.27} = x^2 / (0.02 - x) \Longrightarrow [H^+] = 1.04 \times 10^{-4} \Longrightarrow pH = 3.98$ b) when 3.00 mL of NaOH is added buffer, $pH = pK_a + \log [A^-]/[HA]$ $pH = 6.27 + \log \{3(0.1) / [50(0.02) - 3(0.1)]\} = 5.90$ c) at the equivalence point $[OH^-] = [HA] \rightarrow A^-$, weak base: $K = x^2/(F-x)$ $K_{\rm b} = K_{\rm w}/K_{\rm a} = x^2/[0.02(50/60) - x], [OH^-] = 1.76 \times 10^{-5}, pH = 9.25$ d) when 10.10 mL of NaOH is added excess OH $pH = 13.9956 + log \{ [(10.1)(0.1) - 50(0.02)] / 60.1 \} = 10.22$

Review Polyprotic Acids – Intermediate Form

To determine the pH of H₂A or the salts NaHA or Na₂A which are all part of a diprotic system

1) A solution of H_2A , with formal concentration F, is treated as if it were a monoprotic acid.

$$\begin{array}{rcl} \mathsf{H}_2\mathsf{A}(aq) \ + \ \mathsf{H}_2\mathsf{O}(l) \ <=> \ \mathsf{H}_3\mathsf{O}^+(aq) \ + \ \mathsf{H}\mathsf{A}^-(aq) \\ \mathsf{EQ} \ \ \mathsf{F}-x \ & x \ & x \ & K_{\mathrm{a1}} = x^2 \,/\,(\mathsf{F}-x) \end{array}$$

2) A solution of a salt containing the basic anion A^{2–}, with formal concentration F, is treated as if it were a monobasic base.

$$\begin{array}{rcl} \mathsf{A}^{2-}(aq) \ + \ \mathsf{H}_2\mathsf{O}(l) \ <=> \ \mathsf{OH}^-(aq) \ + \ \mathsf{HA}^-(aq) \\ \mathsf{EQ} \ \ \mathsf{F}-x \ & x \ & x \ & K_{\mathsf{b1}} = K_{\mathsf{w}} \ / \ K_{\mathsf{a2}} = x^2 \ / \ (\mathsf{F}-x) \end{array}$$

3) The species HA⁻ (as in a solution of NaHA) is an **intermediate form** as it can behave as an acid (K_{a2} expression) or as a base (use square root formula)

 $HA^{-}(aq) + H_{2}O(I) \iff OH^{-}(aq) + H_{2}A(aq)$ $K_{b2} = K_{w} / K_{a1}$

The Intermediate Form

A systematic approach can account for both the acidity and basicity of the intermediate form. It can be shown (we will accept Harris's derivation) that, with $K_1 = K_{a1}$ and $K_2 = K_{a2}$

H⁺] =
$$\sqrt{\frac{K_1 K_2 [\text{HA}^-] + K_1 K_w}{K_1 + [\text{HA}^-]}}$$

If one started with NaHA (Na⁺ and HA⁻ in solution) the principal species in solution would be HA⁻ since K_{a2} and K_{b2} are very small. So the equilibrium [HA⁻] can be replaced by F.

$$[\mathrm{H}^+] \approx \sqrt{\frac{K_1 K_2 \mathrm{F} + K_1 K_{\mathrm{w}}}{K_1 + \mathrm{F}}}$$

Due to the small value of K_w it is often true that $K_w \ll K_2 F$ so the term with K_w can be ignored

$$[\mathrm{H}^+] \approx \sqrt{\frac{K_1 K_2 \mathrm{F}}{K_1 + \mathrm{F}}}$$

If H₂A is not too strong of an acid or F is not too dilute so that $K_1 \ll F$ then

$$[\mathrm{H}^+] \approx \sqrt{K_1 K_2} \qquad \text{or} \qquad \mathrm{pH} \approx \frac{1}{2} (\mathrm{p} K_1 + \mathrm{p} K_2)$$

An Application

EX 3. What is the pH of a 0.050 F aqueous solution of NaHSO₃? For sulfurous acid $K_{a1} = 0.0139$, $K_{a2} = 0.0139$ $6.73 \times 10^{-8} (pK_{a1} = 1.8569, pK_{a2} = 7.1719)$ K_{a1} $H_2SO_3(aq) + H_2O(l) <=> H_3O^+(aq) + HSO_3^-(aq)$ $HSO_{3}^{-}(aq) + H_{2}O(l) <=> H_{3}O^{+}(aq) + SO_{3}^{2-}(aq)$ K_{a2} ACID $K_{\rm h2} = K_{\rm w}/K_{\rm a1}$ $HSO_{3}^{-}(aq) + H_{2}O(l) <=> OH^{-}(aq) + H_{2}SO_{3}(aq)$ BASE $[\mathrm{H}^{+}] = \sqrt{\frac{K_1 K_2 [\mathrm{HA}^{-}] + K_1 K_w}{K_1 + [\mathrm{HA}^{-}]}} = \sqrt{\frac{(0.0139)(6.73 \times 10^{-8})(0.05) + (0.0139)(1.01 \times 10^{-14})}{0.0139 + 0.05}} = 2.705 \times 10^{-5}$ => pH = 4.57 shortcut: $pH = \frac{1}{2} (pK_{a1} + pK_{a2}) = \frac{1}{2} (1.8569 + 7.1719) = 4.51$ as a monoprotic: $K_{a2} = x^2 / (0.05 - x) = x = [H^+] = 5.797 \times 10^{-5} = pH = 4.24$ (NG cannot ignore base)

Polyprotic Titrations (Mostly Treated as a Buffer)

$$H_3A \rightarrow H_2A^- \rightarrow HA^{2-} \rightarrow A^{3-}$$

Polybasic Titration

EX 4. 10.00 mL 0.100 M base $pK_{b1} = 4.00$, $pK_{b2} = 9.00$ titrated with 0.100 M HCI. ($pK_{a1} = 5.00$, $pK_{a2} = 10.00$)

```
chemistry: :B: \rightarrow :BH<sup>+</sup> \rightarrow BH<sub>2</sub><sup>2+</sup>
```

EQ PT: $n_{H+} = (MV)_{H+} = n_{OH-} = (MV)_{OH-} => V_e = (10)(0.1)/0.1 = 10.00 \text{ mL}, 2V_e = 20.00 \text{ mL}$

a) before any acid is added (point A) weak base: $K_{b1} = x^2 / (F - x)$ $10^{-4} = x^2 / (0.1 - x) \implies x = [OH-] = 3.112 \times 10-3 \implies pH = 11.49$

b) when 1.5 mL of HCl is added :B: / :BH⁺ buffer $pH = pK_{a2} + log [:B:] / [:BH⁺] = 10 + log {[10(0.1) - 1.5(0.1)] / 1.5(0.1)} = 10.75$

c) when 10.0 mL of HCl is added (point C) 1st EQ PT, :B: \rightarrow :BH+, intermediate form pH = $\frac{1}{2} (pK_{a1} + pK_{a2}) = \frac{1}{2} (5 + 10) = 7.50$

Polybasic Titration

EX 4. 10.00 mL 0.100 M base $pK_{b1} = 4.00$, $pK_{b2} = 9.00$ titrated with 0.100 M HCI. ($pK_{a1} = 5.00$, $pK_{a2} = 10.00$)

```
chemistry: :B: \rightarrow :BH<sup>+</sup> \rightarrow BH<sub>2</sub><sup>2+</sup>
```

```
EQ PT: 10.00 mL, 2V<sub>e</sub> = 20.00 mL
```

d) when 15.0 mL of HCl is added 2nd ½ EQ PT, 1/1 buffer of :BH+/BH₂²⁺ pH = pK_{a1} + log 1 = **5.00**

e) when 20.0 mL of HCl is added (point E) 2nd EQ PT, :BH⁺ \rightarrow BH₂²⁺, weak acid: $K_{a1} = x^2 / (F - x)$ 10⁻⁵ = $x^2 / [0.1(10/30) - x] => x = [H^+] = 5.723 \times 10^{-4} => pH = 3.24$

```
f) when 25.0 mL of HCl is added excess strong acid
pH = -log [(25 - 20)(0.1) / (25 + 10)] = 1.85
```

Polybasic Titration

Leveling Effect

Acid	Formula	Conjugate Base		K _a	pK,	
Hydriodic	HI	1	ny	1011	PJ	-11
Hydrobromic	HBr	Br	=	10 ⁹	=4	-9
Perchloric	HClO ₄	ClO ₄	=	107	=	-7
Hydrochloric	HCI	CI-	-	107	-	-7
Chloric	HCIO ₃	ClO ₃	-	10 ³	=1	-3
Sulfuric (1)	H ₂ SO ₄	HSO ₄	- 14	10 ²	=2	-2
Nitric	HNO3	NO ₃	85	20	-	-1.3
Hydronium ion	H_3O^+	H ₂ O		1	0.0	0
Urea acidium ion	(NH ₂)CONH ⁺ ₃	(NH ₂) ₂ CO (urea)	6.6	$\times 10^{-1}$	0.	18
Iodic	HIO3	IO ₃ -	1.6	$\times 10^{-1}$	0.3	80
Oxalic (1)	$H_2C_2O_4$	$HC_2O_4^-$	5.9	$\times 10^{-2}$	1.3	23
Sulfurous (1)	H ₂ SO ₃	HSO ₃	1.5	$\times 10^{-2}$	1.5	82
Sulfuric (2)	HSO ₄	SO_{4}^{2-}	1.2	$\times 10^{-2}$	1.9	92
Chlorous	HCIO ₂	ClO ₂	1.1	$\times 10^{-2}$	1.9	96

HSO ₃	SO ₃ ²⁻	1.0×10^{-7}	7.00
H ₂ AsO ₄ ⁻	HAsO ₄ ²⁻	9.3×10^{-8}	7.03
H ₂ S	HS ⁻	9.1×10^{-8}	7.04
$H_2PO_4^-$	HPO ₄ ²⁻	6.2×10^{-8}	7.21
HCIO	CIO-	3.0×10^{-8}	7.52
HCN	CN-	6.2×10^{-10}	9.21
NH4	NH ₃	5.6×10^{-10}	9.25
HCO3	CO3-	4.8×10^{-11}	10.32
CH ₃ NH ₃ ⁺	CH ₃ NH ₂	2.3×10^{-11}	10.64
HAsO ₄ ²⁻	AsO ₄ ³⁻	3.0×10^{-12}	11.52
H ₂ O ₂	HO_2^-	2.4×10^{-12}	11.62
HPO_4^{2-}	PO4	2.2×10^{-13}	12.66
H ₂ O	OH-	1.0×10^{-14}	14.00
HS ⁻	S ²⁻	1.0×10^{-19}	19.00
H ₂	H-	1.0×10^{-33}	33.00
NH ₃	NH ₂	1.0×10^{-38}	38.00
OH-	O ²⁻		
	H ₂ AsO ₄ H ₂ S H ₂ PO ₄ HCIO HCN NH ₄ HCO ₃ CH ₃ NH ₃ HAsO ₄ ²⁻ H ₂ O ₂ HPO ₄ H ₂ O HS ⁻ H ₂ NH ₃	$H_2AsO_4^ HAsO_4^{2-}$ H_2S $HS^ H_2PO_4^ HPO_4^{2-}$ $HCIO$ $CIO^ HCN$ $CN^ NH_4^+$ NH_3 $HCO_3^ CO_3^{2-}$ $CH_3NH_3^+$ CH_3NH_2 $HAsO_4^{2-}$ AsO_4^{3-} H_2O_2 $HO_2^ HPO_4^{2-}$ PO_4^{3-} H_2O $OH^ HS^ S^{2-}$ H_2 $H^ NH_3$ NH_2^-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

acids stronger than H₃O⁺

bases stronger than OH⁻