CHEM 116 - Honors and Majors General and Analytical Chemistry I

3 Exams, 9 Quizzes, 10 Labs, 13 Weeks HWK - 875 points (1245 in course)

EIII: AVE $=95$ (63\%) Range: 36-146
EII: AVE = 106 (71\%)
El: \quad AVE $=87$ (58\%)

Q1	6.0	Q5	6.6	Q8	6.4
Q3	4.2	Q6	6.2	Q9	8.3
Q4	7.8	Q7	6.1	Q10	4.9

E1	19.4		E7
E2	13.0		
L3	18.4		SP
E5	17.7		
E5	16.3		L5

Class Averages

EXAM	288	64%
QZ	57	63%
LAB	165	83%
HWK	109	81%

Course Grade Estimate
A 75\%
B 65%
C 50%
D 40%

Titrations

FIND EQUIVALENCE POINT FIRST

CORRECT MOLARITY AS TITRANT IS ADDED

10-1 The Intermediate Form
11-4 Polyprotic (basic) Titrations
homework for week 14,15
due dates this Wednesday
and Friday
lab notebooks due on
Wednesday in discussion

Acid-Base Titrations

"Learn to recognize buffers! They lurk in every corner of acid-base chemistry."

Acid-Base Titrations

Solution of a base of known concentration is added to an acid of unknown concentration (or acid of known concentration added to a base of unknown concentration)
titrant
titration curve
equivalence point half-equivalence point
$\mathrm{pH}>7$ titrating weak acid
$\mathrm{pH}=7$ titrating strong acid or base
$\mathrm{pH}<7$ titrating weak base
endpoint

Acid-Base Titrations - Strong

strong acid or strong base titration overview
classic Arrhenius neutralization reaction characterized by strong acid (base):
strong base (acid) titrant:
total ionic equation:
net ionic equation (what is K ?):
titration curve - one inflection point (equivalence point)

Strong Base Titrations

EX 1. Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr .

EQ PT: $n_{\mathrm{H}_{+}}=(\mathrm{MV})_{\mathrm{H}_{+}}=\mathrm{n}_{\text {OH- }}=(\mathrm{MV})_{\text {OH- }}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\mathrm{H+}}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
a) before any acid is added strong base

$$
\mathrm{pH}=13.9956+\log (0.02000)=12.2966=>12.297
$$

b) when 3.00 mL of HBr is added excess OH^{-}

$$
\mathrm{pH}=13.9956+\log \{[50(0.02)-3(0.1)] / 53\}=12.116
$$

c) at the equivalence point $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$

$$
K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]^{2}=>\left[\mathrm{H}^{+}\right]=\sqrt{ } K_{\mathrm{w}}=>\mathrm{pH}=1 / 2 \mathrm{p} K_{\mathrm{w}}=13.9956 / 2=6.998
$$

d) when 10.50 mL of HBr is added excess H^{+}

$$
\mathrm{pH}=-\log \{[(10.5)(0.1)-50(0.02)] / 60.5\}=3.0827 \text { => } 3.083
$$

$\mathrm{pH}=\mathrm{p} K_{\mathrm{w}}-\mathrm{pOH}, \quad \mathrm{p} K_{\mathrm{w}}=$ $-\log \left(1.01 \times 10^{-14}\right)=13.9956$

Excess $\mathbf{O H}^{-}$	Excess \mathbf{H}^{+}

Acid-Base Titrations - Weak

weak acid (base) titrated with strong base (acid):
weak acid (base):
strong base (acid) titrant:
total ionic equation:
net ionic equation (what is K ?):
titration curve - two inflection points
half-equivalence point (perfect $1 / 1$ buffer)
equivalence point, solution identical to conjugate
base (acid) dissolved in water

Weak Acid Titrations

EX 2. 50.00 mL 0.02000 M MES [2-(N -morpholino)ethanesulfonic acid, $\mathrm{pKa}=6.27$] titrated with 0.1000 M NaOH .
EQ PT: $\mathrm{n}_{\text {OH- }}=(\mathrm{MV})_{\text {OH- }}=\mathrm{n}_{\mathrm{H+}}=(\mathrm{MV})_{\mathrm{H}+}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\text {OH- }}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
a) before any base is added weak acid: $K=x^{2} /(\mathrm{F}-x)$

$$
K_{\mathrm{a}}=10^{-6.27}=x^{2} /(0.02-x)=>\left[\mathrm{H}^{+}\right]=1.04 \times 10^{-4}=>\mathrm{pH}=3.98
$$

b) when 3.00 mL of NaOH is added buffer, $\mathrm{pH}=\mathrm{p} \mathrm{K}_{\mathrm{a}}+\log [\mathrm{A}][\mathrm{HA}]$

$$
\mathrm{pH}=6.27+\log \{3(0.1) /[50(0.02)-3(0.1)]\}=5.90
$$

c) at the equivalence point $\left[\mathrm{OH}^{-}\right]=[\mathrm{HA}] \rightarrow \mathrm{A}^{-}$, weak base: $K=x^{2} /(\mathrm{F}-x)$

$$
K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=x^{2} /[0.02(50 / 60)-x],\left[\mathrm{OH}^{-}\right]=1.76 \times 10^{-5}, \mathrm{pH}=9.25
$$

d) when 10.10 mL of NaOH is added excess OH^{-}

$$
\mathrm{pH}=13.9956+\log \{[(10.1)(0.1)-50(0.02)] / 60.1\}=10.22
$$

Review Polyprotic Acids - Intermediate Form

To determine the pH of $\mathrm{H}_{2} \mathrm{~A}$ or the salts NaHA or $\mathrm{Na}_{2} \mathrm{~A}$ which are all part of a diprotic system

$$
\begin{array}{ll}
K_{\mathrm{a} 1} & \mathrm{H}_{2} \mathrm{~A}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \\
K_{\mathrm{a} 2} & \mathrm{HA}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(\ell)
\end{array}
$$

1) A solution of $\mathrm{H}_{2} \mathrm{~A}$, with formal concentration F , is treated as if it were a monoprotic acid.

$$
\left.\begin{array}{ccc}
\mathrm{H}_{2} \mathrm{~A}(a q) \\
\mathrm{F}-x
\end{array}\right)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})<=>\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HA}^{-}(\mathrm{aq})
$$

2) A solution of a salt containing the basic anion A^{2-}, with formal concentration F, is treated as if it were a monobasic base.

$$
\mathrm{EQ} \begin{array}{ccc}
\mathrm{A}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) & \mathrm{F}-x & \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{HA}^{-}(\mathrm{aq}) \\
x & x & K_{\mathrm{b} 1}=K_{\mathrm{w}} / K_{\mathrm{a} 2}=x^{2} /(\mathrm{F}-x)
\end{array}
$$

3) The species HA^{-}(as in a solution of NaHA) is an intermediate form as it can behave as an acid ($K_{\mathrm{a} 2}$ expression) or as a base (use square root formula)

$$
\mathrm{HA}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) \ll \mathrm{OH}^{-}(a q)+\mathrm{H}_{2} \mathrm{~A}(\mathrm{aq}) \quad K_{\mathrm{b} 2}=K_{\mathrm{w}} / K_{\mathrm{a} 1}
$$

The Intermediate Form

A systematic approach can account for both the acidity and basicity of the intermediate form. It can be shown (we will accept Harris's derivation) that, with $K_{1}=K_{\mathrm{a} 1}$ and $K_{2}=K_{\mathrm{a} 2}$

$$
\left[\mathrm{H}^{+}\right]=\sqrt{\frac{K_{1} K_{2}\left[\mathrm{HA}^{-}\right]+K_{1} K_{\mathrm{w}}}{K_{1}+\left[\mathrm{HA}^{-}\right]}}
$$

If one started with $\mathrm{NaHA}\left(\mathrm{Na}^{+}\right.$and HA^{-}in solution) the principal species in solution would be HA^{-}since $K_{\mathrm{a} 2}$ and $K_{\mathrm{b} 2}$ are very small. So the equilibrium [HA^{-}] can be replaced by F .

$$
\left[\mathrm{H}^{+}\right] \approx \sqrt{\frac{K_{1} K_{2} \mathrm{~F}+K_{1} K_{\mathrm{w}}}{K_{1}+\mathrm{F}}}
$$

Due to the small value of K_{w} it is often true that $K_{\mathrm{w}} \ll K_{2} \mathrm{~F}$ so the term with K_{w} can be ignored

$$
\left[\mathrm{H}^{+}\right] \approx \sqrt{\frac{K_{1} K_{2} \mathrm{~F}}{K_{1}+\mathrm{F}}}
$$

If $\mathrm{H}_{2} \mathrm{~A}$ is not too strong of an acid or F is not too dilute so that $K_{1} \ll \mathrm{~F}$ then

$$
\left[\mathrm{H}^{+}\right] \approx \sqrt{K_{1} K_{2}} \quad \text { or } \quad \mathrm{pH} \approx \frac{1}{2}\left(\mathrm{p} K_{1}+\mathrm{p} K_{2}\right)
$$

An Application

EX 3. What is the pH of a 0.050 F aqueous solution of NaHSO_{3} ? For sulfurous acid $K_{\mathrm{a} 1}=0.0139, K_{\mathrm{a} 2}=$ $6.73 \times 10^{-8}\left(\mathrm{p} K_{\mathrm{a} 1}=1.8569, \mathrm{p} K_{\mathrm{a} 2}=7.1719\right)$

$K_{\mathrm{a} 1}$	$\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I)$	$<=>\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HSO}_{3}{ }^{-}(\mathrm{aq})$	
$K_{\mathrm{a} 2}$	$\mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I)$	$<=>\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{3}^{2-}(\mathrm{aq})$	ACID
$K_{\mathrm{b} 2}=K_{\mathrm{w}} / K_{\mathrm{a} 1}$	$\mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l)$	$<=>\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$	BASE

$$
\left[\mathrm{H}^{+}\right]=\sqrt{\frac{K_{1} K_{2}\left[\mathrm{HA}^{-}\right]+K_{1} K_{\mathrm{w}}}{K_{1}+\left[\mathrm{HA}^{-}\right]}}=\sqrt{\frac{(0.0139)\left(6.73 \times 10^{-8}\right)(0.05)+(0.0139)\left(1.01 \times 10^{-14}\right)}{0.0139+0.05}}=2.705 \times 10^{-5}
$$

$$
\text { => pH = } 4.57
$$

shortcut: $\mathrm{pH}=1 / 2\left(\mathrm{p} K_{\mathrm{a} 1}+\mathrm{p} K_{\mathrm{a} 2}\right)=1 / 2(1.8569+7.1719)=4.51$
as a monoprotic: $K_{\mathrm{a} 2}=x^{2} /(0.05-x)=>x=\left[\mathrm{H}^{+}\right]=5.797 \times 10^{-5}=>\mathrm{pH}=4.24$ (NG cannot ignore base)

Polyprotic Titrations (Mostly Treated as a Buffer)

$$
\mathrm{H}_{3} \mathrm{~A} \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{~A}^{-} \quad \rightarrow \quad \mathrm{HA}^{2-} \quad \rightarrow \quad \mathrm{A}^{3-}
$$

Polybasic Titration

EX 4. 10.00 mL 0.100 M base $\mathrm{p} K_{\mathrm{b} 1}=4.00, \mathrm{p} K_{\mathrm{b} 2}=9.00$ titrated with $0.100 \mathrm{M} \mathrm{HCl} .\left(\mathrm{p} K_{\mathrm{a} 1}=\right.$ 5.00, $\mathrm{p} K_{\mathrm{a} 2}=10.00$)

$$
\text { chemistry: }: \mathrm{B}: \rightarrow: \mathrm{BH}^{+} \rightarrow \mathrm{BH}_{2}^{2+}
$$

EQ PT: $\mathrm{n}_{\mathrm{H}+}=(\mathrm{MV})_{\mathrm{H}+}=\mathrm{n}_{\text {ОН- }}=(\mathrm{MV})_{\text {OH- }}=>\mathrm{V}_{\mathrm{e}}=(10)(0.1) / 0.1=10.00 \mathrm{~mL}, 2 \mathrm{~V}_{\mathrm{e}}=\mathbf{2 0 . 0 0} \mathbf{~ m L}$
a) before any acid is added (point A) weak base: $K_{b 1}=x^{2} /(F-x)$

$$
10^{-4}=x^{2} /(0.1-x)=>x=[\mathrm{OH}-]=3.112 \times 10-3=>\mathrm{pH}=\mathbf{1 1 . 4 9}
$$

b) when 1.5 mL of HCl is added $: \mathrm{B}: /: \mathrm{BH}+$ buffer
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a} 2}+\log [: \mathrm{B}:] /\left[: \mathrm{BH}^{+}\right]=10+\log \{[10(0.1)-1.5(0.1)] / 1.5(0.1)\}=10.75$
c) when 10.0 mL of HCl is added (point C) 1 st $\mathrm{EQ} \mathrm{PT},: \mathrm{B}: \rightarrow: \mathrm{BH}^{+}$, intermediate form $\mathrm{pH}=1 / 2\left(\mathrm{p} K_{\mathrm{a} 1}+\mathrm{p} K_{\mathrm{a} 2}\right)=1 / 2(5+10)=7.50$

Polybasic Titration

EX 4. 10.00 mL 0.100 M base $\mathrm{p} K_{\mathrm{b} 1}=4.00, \mathrm{p} K_{\mathrm{b} 2}=9.00$ titrated with $0.100 \mathrm{M} \mathrm{HCl} .\left(\mathrm{p} K_{\mathrm{a} 1}=\right.$ $5.00, \mathrm{p} K_{\mathrm{a} 2}=10.00$)

$$
\text { chemistry: }: \mathrm{B}: \rightarrow: \mathrm{BH}^{+} \rightarrow \mathrm{BH}_{2}{ }^{2+}
$$

EQ PT: $\mathbf{1 0 . 0 0} \mathbf{~ m L}, 2 \mathrm{~V}_{\mathrm{e}}=\mathbf{2 0 . 0 0} \mathbf{~ m L}$
d) when 15.0 mL of HCl is added 2 nd $1 / 2 \mathrm{EQ}$ PT, $1 / 1$ buffer of : $\mathrm{BH}^{+} / \mathrm{BH}_{2}{ }^{2+}$

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a} 1}+\log 1=5.00
$$

e) when 20.0 mL of HCl is added (point E) 2 nd $\mathrm{EQ} \mathrm{PT},: \mathrm{BH}^{+} \rightarrow \mathrm{BH}_{2}{ }^{2+}$, weak acid: $\mathrm{K}_{\mathrm{ad}}=x^{2} /(\mathrm{F}-x)$

$$
10^{-5}=x^{2} /[0.1(10 / 30)-x]=>x=\left[\mathrm{H}^{+}\right]=5.723 \times 10^{-4}=>\mathrm{pH}=3.24
$$

f) when 25.0 mL of HCl is added excess strong acid

$$
\mathrm{pH}=-\log [(25-20)(0.1) /(25+10)]=1.85
$$

Polybasic Titration

First buffer region	Second buffer region	Excess \mathbf{H}^{+}

Leveling Effect

Acidity Constants in Water at $25^{\circ} \mathrm{C}$				
Acid	Formula	Conjugate Base	K	pK,
Hydriodic	HI	I^{-}	$\Rightarrow 10^{11}$	\% -11
Hydrobromic	HBr	Br^{-}	$\Rightarrow 10^{9}$	$\Rightarrow-9$
Perchloric	HClO_{4}	ClO_{4}^{-}	$=10^{7}$	* -7
Hydrochloric	HCl	Cl^{-}	$=10^{7}$	$=-7$
Chloric	HClO_{3}	ClO_{3}^{-}	$=10^{3}$	~-3
Sulfuric (1)	$\mathrm{H}_{2} \mathrm{SO}_{4}$	HSO_{4}^{-}	$=10^{2}$	$=-2$
Nitric	HNO_{3}	NO_{3}^{-1}	$=20$	$=-1.3$
Hydronium ion	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{2} \mathrm{O}$	1	0.0
Urea acidium ion	$\left(\mathrm{NH}_{2}\right) \mathrm{CONH}_{3}^{+}$	$\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ (urea)	6.6×10^{-1}	0.18
Iodic	HIO_{3}	$1 \mathrm{O}_{3}^{-}$	1.6×10^{-1}	0.80
Oxalic (1)	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$	5.9×10^{-2}	1.23
Sulfurous (1)	$\mathrm{H}_{2} \mathrm{SO}_{3}$	HSO_{3}^{-}	1.5×10^{-2}	1.82
Sulfuric (2)	HSO_{4}^{-}	SO_{4}^{2-}	1.2×10^{-2}	1.92
Chlorous	HClO_{2}	ClO_{2}^{-}	1.1×10^{-2}	1.96

Sulfurous (2)	HSO_{3}^{-}	SO_{3}^{2-}	1.0×10^{-7}	7.00
Arsenic (2)	$\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$	HAsO_{4}^{2-}	9.3×10^{-8}	7.03
Hydrosulfuric	$\mathrm{H}_{2} \mathrm{~S}$	HS^{-}	9.1×10^{-8}	7.04
Phosphoric (2)	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	HPO_{4}^{2-}	6.2×10^{-8}	7.21
Hypochlorous	HClO	ClO^{-}	3.0×10^{-8}	7.52
Hydrocyanic	HCN	CN^{-}	6.2×10^{-10}	9.21
Ammonium ion	NH_{4}^{-}	NH_{3}	5.6×10^{-10}	9.25
Carbonic (2)	HCO_{3}^{-}	CO_{3}^{2-}	4.8×10^{-11}	10.32
Methylammonium ion	$\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}$	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	2.3×10^{-11}	10.64
Arsenic (3)	HAsO_{4}^{2-}	AsO_{4}^{3-}	3.0×10^{-12}	11.52
Hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$	HO_{2}^{-}	2.4×10^{-12}	11.62
Phosphoric (3)	HPO_{4}^{2-}	PO_{4}^{1-}	2.2×10^{-13}	12.66
Water	$\mathrm{H}_{2} \mathrm{O}$	OH^{-}	1.0×10^{-14}	14.00
Hydrogen sulfide ion	HS^{-}	S^{2-}	1.0×10^{-19}	19.00
Hydrogen	H_{2}	H^{-}	1.0×10^{-33}	33.00
Ammonia	NH_{3}	NH_{2}^{-}	1.0×10^{-38}	38.00
Hydroxide ion	OH^{-}	O^{2-}		

bases stronger than OH^{-}

